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TURBULENT MHD FLOW OF A RADIATING GAS 
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Abstract- The high temperatures and gaseous products of combustion of hydrocarbon fuels in proposed 
large scale magnetohydrodynamic generators have resulted in a need to develop accurate models for 
prediction of gas temperature profiles and wall heat fluxes. At the high tem~ratures and large sizes, radiative 
heat transfer in the combustion gases may be a significant energy transport mechanism. Results are presented 
for gas temperature profiles for fully developed turbulent magnetohydrodynamic flow of a radiating gray gas 
between infinite parallel plates with a magnetic field applied perpendicular to the plates. Emphasis is placed 
on examination of temperature profiles and Nusselt numbers for various values of Hartmann and Reynolds 

numbers, gas optical thickness, and conduction to radiation parameter. 
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NOMENCLATURE 

coe&ients defined by equation (28); 
van Driest constant, 26.0; 
Mei and Squire constant, 3.4; 
black body emissive power [W/m’] ; 
magnetic field [Webers/m2] ; 
magnetic interaction, Ha”/Re; 

constant pressure specific heat 

[kJ,'bKl ; 
friction coefficient ; 
terms defined by equation (29) ; 

magnetic damping function; 
hydraulic diameter [m] ; 
terms defined by equation (30) ; 
electric field [V/m] ; 
Eckert number, i?/c,T,,,; 

exponential integral of order n; 
function defined by equation (7); 
Hartmann number, 6B,(a,/~)“~ ; 
current density [A/m’] ; 
dimensionless current, j/a,i%,,,; 
thermal conductivity [W/m-K] ; 
power factor, E/liB, ; 
kernels defined by equations (16) and 

(20) ; 
Von Karman constant, 0.4; 
channel width [m]; 

number of nodal points ; 
conduction to radiation parameter, 
k@aT;t ; 
Nusselt number, D,q,&T, - Tb); 

molecular and turbulent Prandtl num- 
bers, v/a, v,/c(, ; 
heat flux [W/m21 ; 
dimensionless heat flux, - 4/4rooT$ ; 

4 parameter ; 
T, temperature [K] ; 
4 velocity [m/s] ; 
%, 4 centerline and mean velocities [m/s] ; 
V, normalized velocity, u/r?; 

V,, scaling factor, 4 Re,; 

4 Y, 2, coordinates [m] ; 
Z, turbulent coordinate. 

Greek symbols 

Subscripts 

b, 
c, 
r, 
W, 

molecular and turbulent diffusivities 

[m2/sl ; 
channel half width [m] ; 
parameter ; 
dimensionless coordinate, z/S ; 
normalized temperature, T/T,,,; 

absorption coefficient [m- ‘1; 
dynamic viscosity [kg/m-s] ; 
molecular and turbulent viscosities 

[m2/sl ; 
logarithmic coordinate defined in equa- 
tion (31); 
Stefan-Boltzmann constant 
[W/m’-K4] ; 
electrical conductivity [a- 1 m- 1 J ; 
optical thickness, KZ ; 
channei optical thickness, XL. 

bulk ; 
convective ; 
radiative ; 
wall. 

channel Reynolds number, vJ/v; 
hydraulic Reynolds number, v,D,/v ; 

THE HIGH temperatures of gaseous products resulting 

turbulent Reynolds number, Re(Cf/2)“2 ; 
from combustion of hydrocarbon fuels have resulted in 
a need to develop more accurate models for prediction 
of gas temperature profiles and wall heat fluxes in the 

* Presently, Research Assistant, Stanford University. 
magnetohydrodynamic generator (MHD). Infor- 
mation concerned with gas temperature profiles parti- 
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cularly near the generator walls is necessary in order to 
evaluate the gas electrical conductivity and associated 
wall heat fluxes. Successful design of a wall cooling 

system and selection of materials for the generator 
walls also require estimates for wall heat fluxes. Pit the 

high operating temperatures and in the presence of 

combustion products of carbon dioxide and water 
vapor, particles, as well as a seed material which acts as 

a plasma, radiative heat transfer is expected to become 
an important factor as the size of the generator 
increases [ 11. The overall objective of this research is 
an examination of radiative transfer in MHD flows. 

Resuits from this study are also expected to find 
application to gas-cooled nuclear reactors and flow of 
plasma. 

Viskanta [2,3], Cramer and Pai [4] as well as 
Wilson and Haji-Sheikh [S] examined radiative trans- 
fer for MHD flow between infinite parallel plates for 

gray gas properties where the absorption coefficient is 
independent of frequency. Gupta and Gupta [6] as 
well as Dana and Janta [7] investigated radiative 

transfer effects for flow of an optically thin, electrically 
conducting fluid in a vertical channel. Helliwell 18.91 

as well as Helliwell and Mosa [lo] utilized the 
differential approximation [l 1) to describe radiative 

transfer in MHD channel flow. Smith and Paul [12] 

employed a band absorption model to examine radi- 
ative transfer in MHD flow. In these investigations, 
the how was assumed laminar with several of the 
analyses [2,3,5, 8- 10, 121 utilizing velocity profiles as 

obtained from the Hartmann MHD flow results [ 131. 
In most MHD generators, however, the flow is expec- 
ted to be turbulent and results derived from these 

analyses may not be directly applicable to proposed 
generators. This concern is illustrated by the fact that a 
Hartmann number of 200 which is representative of 
that for the U-25 channel [14] yields physically 
unreasonably high channel centerline temperatures 

when inserted into the above analyses. Consequently. a 
need exists to provide results concerned with radiative 

transfer in turbulent MHD flows. 
The purpose of this paper is to present results to 

illustrate effects of radiative transfer in turbulent 
MHD how. The system selected for study as depicted 
in Fig. 1 consists of hydrodynamically and thermally 

established turbulent steady flow of an electrically 
conducting and radiatively participating gas between 

two infinite parallel plates with an imposed uniform 
and constant magnetic field applied in the posnivc ,I- 

Fro. 1. Schematic diagram of MHD channel. 

direction. A constant electric field is applied in the 
positive y-direction. This system was chosen for con- 
venience of including MHD effects and enabling the 
radiative transfer contribution to bc evaluated. Ana- 

lyses and results presented here, however. are expected 

to be applicable to more comprehensive MHD flow 

models. Channel walls are isothermal and black fat, 
radiative transfer purposes. Physical properties of the 
gas are constant. The gas is in local thermodynamic 
equilibrium and emits and absorbs thermal radiation 
with a constant absorption coefficient. The gas ha> it 
refractive index of unity, and scattering effects are 

negljgible. Results are sought for gas ternper~~t~~re 
profiles and Nusselt numbers as functions of system 
parameters. 

The thermal energy equation for fully developed 
turbulent flow of an electrically conducting and radi- 

atively participating gas between infinite parallel 
plates where viscous dissipation and Joule heating 

effects are considered but axial components of con- 
ductive, convective and radiative transfer are neglected 

is [13. 1.5, lh] 

where constant properties have been assumed through- 

out. In equation (l), the LHS represents the net 
thermal energy transport due to molecular conduction 
and turbulent transport with t(, denoting the turbulent 
diffusivity of heat. The terms on the RHS arc in the 
order shown the molecular and turbulent viscous 
dissi~dtion with vr being the turbulent viscosity of 
momentum, Joulean heating with cr, denoting the gas 
electrical conductivity, and divergence of the radiative 
flux. Both the turbulent transport quantities are 
assumed to vary across the channel. The boundary 
conditions for the temperature distribution are 7‘(O) r 
T(L) = T,. The following dimensionless quantities are 

introduced 

where Pr and Pr, denote the molecular and turbulent 
Prandtl numbers, respectively. HLI is the Hartmann 
number based on the half-channel width 6, and N 
represents the ratio of molecular thermal conduction 
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to radiation for a gas with an absorption coefficient K 
and optical thickness r0 based on the channel width. 
Equation (1) thus becomes 

with boundary conditions e(O) = o(2) = 1. As a result 
of the numerical scheme employed to solve equation 
(3), the derivative on the LHS was retained. Since Qr is 
expressed by an integral term with temperature ap- 
pearing to the fourth power in the integrand, equation 

(3) constitutes a second-order, non-linear, 
integrodifferential equation for the gas temperature 
distribution. In order to predict the gas temperature 
profiles, expressions for gas velocity profiles, turbulent 
viscosity, current density, and radiative flux must be 
specified and are provided in the following sections. 

Velocity, turbulent viscosity, and current models 
The flow in several proposed MHD power gener- 

ators such as the U-25 is subsonic and turbulent. 
Thus, in considering subsonic flow, the relation of the 
turbulent boundary layer and free stream is assumed 
to be similar to that encountered in ordinary hy- 
drodynamic (OHD) flows where magnetic effects are 
absent. Kruger and Sonju [17] by employing the 
Karman-Pohlhausen technique have provided an 
estimate of wall shear stress and boundary-layer 
thickness corresponding to the semi-empirical velocity 
correlations proposed by Harris [18]. The local ve- 
locity normalized with the centerline value is evaluated 
from 

v(v) -= 6.154 + 2.457 
UC 

Ha2 
x MRe,?) + FI -jgV ( )I . (4) 

* 

Kruger and Sonju [ 171 noted that for MHD flow over 
a flat plate, the boundary-layer thickness and wall 
shear stress approach asymptotic values. Since the 
present study addresses fully developed flow con- 
ditions, the asymptotic value for wall shear stress was 
employed for the friction coefficient in equation (4). 
Graphical results for the asymptotic friction coefficient 
presented by Kruger and Sonju [17] are approximated 

by 

2 = [lo.536 + 0.929 In(B) 

+ 0.0222 ln2(B)] x 1O-3 (5) 

where B (= Ha2/ReZ) is the interaction parameter. 
The turbulent Reynolds number is defined as 

where Re ( = ReD/4) and ReD ( =4v&v) denote the 
channel and hydraulic Reynolds numbers, respec- 
tively. The function F,(i) is presented graphically by 
Harris [18] and is approximate by the following 
expression [17] for 5 I 0.6 

F,(l) = 2.502 + 21.9301 

- (6.259 + 53.7475 + 649.535~“)“‘2 (7a) 

and for < > 0.6 

F,(i) = -2.07 - 2.457 In(c), (7b) 

Near the wall when n is small, velocities evaluated from 
equation (4) become negative as a result of the 
loga~thmic term. Therefore, in a manner similar to 
that employed in OHD turbulent flows for the laminar 
sublayer, velocities are calculated utilizing the product 
of Re,v up to the position where this product equals 
equation (4). The mean velocity is determined by 
integration of the local velocities across the half- 
channel width. The velocity ratio V is then formed by 
dividing the local velocities by the mean velocity. 
Finally, differentiation of the velocity ratio yields the 
velocity gradient for insertion into the viscous dissi- 
pation term of equation (3). 

Expressions for the turbulent viscosity for MHD 
flow are generally based on those for turbulent vis- 
cosity for OHD flow with m~ifications to account for 
such factors as the damping of the turbulent viscosity 
as the magnetic field is increased. For the present 
study, the OHD turbulent viscosity model of van 
Driest [ 191 as modified by the Mei and Squire channel 
factor [20] is utilized with a multiplicative magnetic 
damping function utilized by Fiveland [21]. Thus, 

(8) 

where 5, K, and A are the Mei and Squire, Van 
Karman, and van Driest constants, respectively, and 
the turbulent distance is 

Z = qRe, 

The magnetic damping function is [21] 

(9) 

D = ,-?COHai/Re: 
(W 

The OHD turbulent viscosity model has also been 
employed by Edwards and Balakrishnan [22] in 
studies of turbulent channel flow of a radiating gas. 
The turbulent Prandtl number is assumed unity for the 
results presented here. 

The electrically conducting gas moving through the 
imposed magnetic field produces an induced current 
flowing in the negative y-direction of Fig. 1. In 
dimensionless form, the induced current is [13, I73 

J(V) = K - F(V) (II) 

where the power factor K = E/t& with E represent- 
ing the applied electric field. If I< = 1, an open circuit 
exists and the net current given by the integration of 
equation (11) across the channel is zero. A short circuit 
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results in E = I( = 0. Values of K < I and > 1 imply, integral, and the dimensionless variables, equation { 17 i 
respectively, to an MHD generator and pump. The becomes 
additional Joulean dissipation due to turbulent fluc- 
tuations in the velocity 1181 is neglected 1211. dQ, i0 ” 

da = -I 8 _ 1’ 
l]P4(<) - (W)J 

The formulation of the gas radiative transfer model 
considers the gas to have a constant absorption 
coefficient. From Sparrow and Cess [ 161, the radiative 
flux for an emitting and absorbing gray gas in local 
thermodynamic equilibrium is 

q,(z) = 2E,(O)[E,(t) - E,(r, - T,] 

r 

ill 

tm 2 E,(~)E,(IT -. r/)sgn(z - t)dr (12) 
.0 

where optical thickness is defined as T = KZ. Ez and E, 
denote second and third exponential integrals, re- 
spectively. E, is the black body emissive power given 
by the Stefan -Boltzmann law. The wall radiative flux 

is needed in the Nusselt number expressions discussed 
later and is found by evaluating equation (12) at the 

wall where 5 = 0. Thus, with E,(O) = 112 

Introducing the dimensionless parameters defined by 

equation (2) and the integral property of the exponen- 
tial integrals, equation (13) is transformed to 

(14) 

Recognizing that the temperature profiles are sym- 
metric about the channel centerline, wall heat flux may 
be evaluated from 

Q,(O) = I r 
4 i’ 

(H4 - 1 )K, (rl)da (15) 
. 0 

where the kernel K, is defined as 

The above form for wall radiative flux is convenient 
since the numerical integration is carried out only for 
one-half of the channel. 

The divergence of radiative flux needed for solution 
of equation (3) is found by differentiation of equation 
(12) with respect to r. Thus, 

dq, 
~ = 4&(r) - 2&(0)[&(7) + Ez(to - T,] 
dr 

i 

TO 

-2 E&)E,(Ir - t])dr (17) 
Y’ 0 

where E, is the first exponential integral. Introducing 
the technique presented by Mingle [23] for removal of 
the singularity in the integral of the first exponential 

Finally, employing the sy~nmetr~~ temperature profile 
conditions, the divergence of the radiative flux is 

x K,(rl,i)di - i[f14iri) -- l]K,(n) (19) 

where the kernel I(, is defined as 

K,(v,O=E,[;(~V-:/)~ 

f E, 1. Yf(2 .- ; - r/J (tot 
i 

Hence, only information about temperature profiles in 
the half-channel is needed. 

Wail heat jlux and Nusselt numbers 
The wall heat flux is the sum of the conductive and 

radiative fluxes evaluated at the wall and is given by 

which may be expressed as 

Q,v = .?j !!! / i Q,(f& 1221 
0 w--O 

Another quantity of interest is the Nusselt number 

defined in terms of the wafl heat flux and hydraulic 
diameter as 

where T, is the bulk fluid temperature. Equation (22) 
in conjunction with equation (23) transform to 

Nu = Nu, + ?iu, (24) 

where convective and radiative Nusselt numbers are 

defined respectively as 

4 dD 
Nu,= 

t&, - 1 dq / ,,zo’ 

The bulk fluid temperature is found from 

r 

I 
Hb = BV dr/. 

.0 
(26) 

The above definition of the convective Nusselt number 
includes effects attributed to radiative transfer since 
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the gas temperature gradient at the wall is partially appearing in the analysis were evaluated utilizing a 
governed by the radiant exchange process. variable spacing trapezoidal integration algorithm. 

METHOD OF SOLUTION 

Solutions of the energy equation were arrived at by a 
finite difference scheme where equation (3) was re- 
placed with a set of linear algebraic equations with the 
source and nonlinear terms on the RHS of equation (3) 
assumed known. An iterative technique was then 
utilized since the radiative term varies with tempera- 
ture. The finite difference scheme for symmetry con- 
ditions about the channel centerline yields the follow- 
ing set of algebraic equations for the temperatures 

For turbulent flows, velocity and temperature pro- 
files vary significantly near the channel wall and a 
nonuniform grid spacing must be employed to main- 
tain a manageable number of grid points. The nodal 
positions were assigned according to the following 
expression [22] 

1 
tl = $e’ - 1); 5 = ln(qF, + 1) (31) 

f 

Ai-1Bi_l - (Ai- + Ai)Bi + AiBi+i = -Ci - D,; 

i= 2 to A4 - 1 (27a) 

2~~-i(e~-i - e,) = -cu - ~~ (27b) 

where i = 1 and M correspond to positions at the 
channel wall and centerline, respectively, and 0r = 1.0. 
The coefficients of tYi are evaluated from 

where V, (= 4ReJ is a scaling factor whose purpose is 
to place more points in the vicinity of the wall. The 
constant utilized in ‘v, was selected after some numeri- 
cal experiments were performed to establish the in- 
fluence of nodal positions on the temperature distri- 
butions. The distance 5, as measured from the wall to 
the channel center where q = 1 in equation (31) is 
subdivided into M - 1 equally spaced nodes. Equation 
(31) then yields a variable grid spacing for values of tl 
with sufficient number of points near the channel wall. 
For the results presented here, M = 51 was found to 
provide accurate results within reasonable compu- 
tational times. 

i = 1 to M - 1 (28) 

where the subscript i + l/2 denotes that the quantity is 
to be evaluated at the midpoint between adjacent 
nodes. Also, r~r = 0, and I]~ = 1.0. The temperature 
independent source terms of viscous dissipation and 
Joulean heating are represented by Ci which are 
determined from 

ci = AViPIEC[(l + ;)(q + Ha’J”li; 
i = 2 to M (29) 

where An, is the width of each node. Nodal boundaries 
are placed at the midpoint between adjacent nodes. 
The temperature dependent radiative terms described 
by Di are given as 

Di=Arlis dQ, 
2N drl i 

; i=2toM (30) 

With the source terms known, equation (27) was 
solved utilizing a tridiagonal matrix algorithm. The 
iteration scheme consisted of specification of an initial 
temperature distribution to evaluate the radiative 
term. New temperatures from equation (27) were then 
obtained. If the new temperatures upon comparison 
with the previous temperatures do not satisfy a 
convergence error criterion, the previous temperatures 
were adjusted with a relaxation factor multiplied by 
the difference between the new and previous tempera- 
tures and the iteration process repeated. The re- 
laxation factor whose value was typically 0.1 was 
employed to ensure that nonlinearities attributed to 
the radiative term were suppressed and that con- 
vergence could be obtained. Upon achievement of 
convergence, the bulk fluid temperature, wall heat 
fluxes, and Nusselt numbers were calculated. Integrals 

RESULTS AND DISCUSSION 

Parameter values 
Before results from the analysis are presented, it is 

informative to identify physically representative values 
of the dimensionless quantities which govern the 
solutions. Values for the dimensional parameters were 
selected as typical of those for a large scale MHD 
generator such as the U-25 channel [14]. For this 
channel, the mean velocity is approximately 900 m/s, 
centerline temperatures are near 28OOK, wall tem- 
peratures may range from 1000 to 1800 K depending 
on the wall cooling system, electrode materials, and 
presence of a molten slag layer, channel widths vary 
from 0.35 to 0.75 m, the magnetic field is near 2 
Webers/m’, and the gas has an average electrical 
conductivity of 10 R- ’ m- i. Utilizing these values as 
well as gas property data taken from Bunde [24], 
representative values for the dimensionless parameters 
are Re, = 3 x 106, Ha = 200, EC = 0.2, and N = 
0.0001 to 0.01 with r,, = 0.1 to 10. Definitive values for 
r,, are unavailable; however, Wilson and Haji-Sheikh 
[S] quoted an absorption coefficient of 0.0001 m- 1 for 
a small scale MHD channel, and Smith and Paul [ 123 
reported optical thicknesses ranging from 1 to 10 for a 
gas composition similar to that in the U-25 channel. In 
selection of values for the governing parameters, 
cognizance was made of these approximate but physi- 
cally meaningful values of the parameters, 

Transparent gas 
Representative velocity and temperature profiles for 

a transparent gas displayed in Figs. 2 and 3, re- 
spectively, are intended to illustrate the turbulent 
characteristics and behavior of the results. Profiles are 
shown for OHD and MHD flows with hydraulic 
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FIG. 4. Temperature profiles as a function of optical thickness. 

Reynolds numbers of 1 x lo6 and 3 x lo6 and 
Hartmann numbers of zero for the OHD results and 
150 and 200 for the MHD flows. The OHD velocity 
profiles are based on the universal turbulent profiles 
with the coefficient of friction evaluated from the 
Filonenko expression [25]. The OHD velocity profiles 
exhibit smaller gradients near the wall and lower mean 
velocities than the MHD velocity profile for the same 
centerline velocities. As the Hartmann increases the 
profiles become more uniform with higher gradients 
near the wall. For the OHD velocity profiles, higher 
Reynolds numbers produce flatter profiles and steeper 
velocity gradients near the wall. However, for the 
MHD velocity profiles, higher Reynolds numbers 
produce the opposite effect as displayed by results for 
Ha = 200. As presently modeled, the magnetic 
damping function in the turbulent viscosity expression 
does not influence the velocity profiles. The OHD 
temperature profiles in Fig. 3 are the result of viscous 
dissipation and exhibit values near 1.07 for the two 
Reynolds numbers. The inclusion of the Joulean heat- 
ing term in the energy equation is seen to produce 
significantly higher gas temperatures for MHD flows 
than for the OHD case. Values of the Hartmann 
number of 150 and 200 produce, respectively, center- 
line temperatures of 2.4 and 3.4 for ReD = 3 x 106. 

Decreasing the Reynolds number results in higher gas 
temperatures since the transport of energy due to 
Joulean heating by the turbulent mechanism is re- 
duced. Results are also presented in Fig. 3 for a 
magnetic damping function of unity in equation (8), 
that is the OHD form. The damping function for Re, 
= 3 x lo6 and Ha = 200 has a value of 0.96. The 
inclusion of the damping function produces higher gas 
temperatures since the turbulent viscosity is reduced 
resulting in less energy being transported to the wall. 
In comparison with temperatures evaluated for Hart- 
mann MHD flow where laminar flow is assumed [5, 
12, 131, the present temperature profiles are for 
significantly higher Hartmann numbers. Thus, by 
including turbulent transport in the energy equation, 
higher Hartmann numbers are possible with physi- 
cally reasonable temperature profiles. 

Radiating gas 
Representative temperature profiles for a radiatively 

participating gas are displayed in Fig. 4 for Reynolds 
and Hartmann numbers of 3 x lo6 and 200, re- 
spectively, and N = 0.001. Results are presented for 
channel optical thicknesses ranging from zero cor- 
responding to a transparent gas to 50. Values for the 
other governing parameters are provided in the figure. 
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FIG. 5. E&t of conduction-radiation parameter. 

As the opticai thickness increases from 0 to 10.0, 
significant decreases in gas temperatures are observed. 
For optical thicknesses less than about 0.1, the results 
are adequately described by those when the gas is 
assumed to be optically thin [16]. For optical thick- 
nesses greater than 10.0, gas temperatures continue to 
decrease and become nearly insensitive to optical 
thickness particularly near the channel centerline. At 
very large optical thicknesses corresponding to an 
optically thick gas, the product of the divergence of the 
radiative heat flux and square of the channel optical 
thickness is independent of optical thickness [16]. 
Thus, the gas temperatures as observed by equation (3) 
become inde~ndent of the optical thickness. For the 
anticipated optical thickness range of 1 to 10, center- 
line gas temperatures vary from approximately 1.4 to 
2.0 higher than the wall temperatures. 

Effects of the conduction-radiation parameter on 
gas temperature profiles are illustrated in Fig. 5 where 
results are shown for values of the parameter equal to 
0.0001, 0.001 and 0.01 with optical thicknesses of 1.0, 
5.0 and 10.0. As the conduction-radiation parameter 
decreases, the radiative term in equation (3) becomes 
more significant with a resultant decrease in gas 
temperatures. The optically thick limit where gas 

temperatures are independent of optical thickness is 
attained at smaller values of the optical thickness for 
the Iower values of the conduction-radiation 
parameter. 

The influence of the Reynolds and Hartmann num- 
bers is demonstrated in Fig. 6 where gas temperature 
profiles are presented for N = 0.001, TV = 5.0, and 
several values the Reynolds and Hartmann numbers. 
As expected, higher Hartmann numbers produce 
higher gas temperatures and higher Reynolds numbers 
yield lower profiles as a result of the increase turbulent 
transport. Gas temperatures are observed to be more 
sensitive to the higher values of the Reynolds number. 

In Table 1, results are tabulated for the bulk 
temperature, as well as convective, radiative, and total 
Nusselt numbers for various values of the governing 
parameters. The table is organized into four groups 
corresponding to temperature profiles presented in 
Figs. 3-6. The first group of results is for a transparent 
gas. The OHD flow produces a convective Nusselt 
number of 7310 for Re, = 3 x 106. Experimental 
measurements for OHD turbulent flow [26] yield a 
Stanton number correlation from which a Nusselt 
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FIG. 6. Effect of Reynolds and Hartmann numbers. 

Table 1. Bulk temperatures and Nusselt numbers* 

Re, lo6 Ha N To @b Nu,, lo4 Nu,, lo4 Nu, lo4 

3 

1 
3 

10 
1 
3 

10 

0 
150 
150 
200 

200 

200 

150 

200 

0 0 

O.cQl 0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 
20.0 
50.0 

0.01 1.0 
5.0 

10.0 
0.0001 1.0 

5.0 
10.0 

0.001 5.0 

1.07 0.731 0.0 0.731 
4.17 0.139 0.0 0.139 
2.30 0.395 0.0 0.395 
3.18 0.371 0.0 0.371 

2.98 0.378 0.066 0.445 
2.70 0.391 0.183 0.574 
2.21 0.427 0.521 0.948 
1.87 0.475 0.978 1.45 
1.61 0.540 1.66 2.20 
1.41 0.626 2.86 3.49 
1.32 0.667 3.87 4.54 
1.27 0.680 4.76 5.44 
1.24 0.654 5.29 5.94 

2.63 0.396 0.218 0.614 
2.09 0.434 0.652 1.09 
1.94 0.438 0.881 1.32 
1.27 0.826 4.54 5.37 
1.08 1.98 17.4 19.4 
1.06 2.54 24.0 26.5 

1.30 0.373 
1.27 0.732 
1.22 2.13 
1.44 0.289 
1.41 0.626 
1.34 1.70 

2.44 
2.40 
2.36 
2.92 
2.86 
2.72 

2.81 
3.13 
4.49 
3.21 
3.49 
4.43 

*Results are for K = 0.5, Pr = 0.85, Pr, = 1.0, EC = 0.2. 



number of 7100 is calculated for Ren = 3 x 106. Thus, 
the results presented here for OHD appear reasonable. 
As the Hartmann number is increased, the convective 

Nusselt number decreases since the increase in tem- 
perature gradient at the wall is oKset by a more rapid 
increase in bulk temperature. Results in the second 
group for a radiating gas illustrate that as the channel 
optical thickness increases, the convective Nusselt 

number increases and then decreases for optical thick- 
nesses greater than about 20.0. The radiative Nusselt 
number continues to increase with optical thickness 

and shows a tendency of becoming independent of 
optical thickness which is characteristic of an optically 
thick gas. The radiative Nusselt number is the signi- 
ficant contributor to the total Nusselt number for 

optical thicknesses greater than 5.0. As the con- 
duction -radiation parameter is increased, the Nus- 

selt numbers presented in the third group exhibit 
large increases with optical thickness particularly for 
values of this parameter less than 0.001. Convec- 

tive Nusselt numbers for values 0t the 
conduction- radiation parameter less than 0.01 arc 

nearly independent of the optical thickness. The 
Nussett numbers for N = 0.001 exhibit rather signi- 

ficant increases as the optical thickness is varied from 
0.5 to 10.0 even though the corresponding gas tem- 

perature profiles in Fig. 5 and bulk temperatures in 
Table 1 change only slightly. The fourth group of 

results shows that as the Hartmann number is in- 

creased from 150 to 200, convective Nusselt numbers 

decrease but radiative Nusselt numbers increase, and 
total Nusselt numbers increase except for Rc,) -= 10’ 

where a small decrease is found. Increasing the Rey- 

nolds number from lOh to 10’ produces significant 
increases in the convective Nusselt number, and small 
decreases in the radiative Nusselt number. These 
trends are consistent with the temperature levels and 

gradients in Fig. 6. 

Analyses and results have been presented to ex- 

amine the influence of gas radiation on temperature 
profiles for fully developed turbulent MHD flow. 
Representative models for turbulent gas velocity pro- 
files as a function of the Reynolds and Hartmann 
numbers, turbulent viscosity with a magneticdamping 
function, current density, and radiative transfer for an 
absorbing and emitting gas with constant absorption 
coefficient were introduced. Analyses were also pre- 
sented for gas bulk temperature as well as convective, 
radiative, and total Nusselt numbers. The results 
illustrated that gas radiation lowers significantly gas 
temperatures. Higher Hartmann numbers yield higher 
gas tem~ratures but higher Reynolds numbers pro- 
duce lower temperatures as a result of the increased 
turbulent transport. The convective Nusselt number 
remains nearly constant as the optical thickness 
increased. At intermediate to large values of optical 
thickness, the radiative Nusselt number dominates the 

convective Nusselt number and exhibits a strong 
dependency on optical thickness. 
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ECOULEMENT TURBULENT MHD DUN GAZ RAYONNANT 

R&nn&Les hautes temperatures et les produits gazeux de la combustion des hydrocarbures dans des 
generateurs MHD de grande taille nicessitent le developpement de modtles pr&cis pour la prediction des 
profils de temperature des gaz et des flux thermiques parietaux. Aux temperatures elevees et pour les grandes 
tailles, le transfert thermique par rayonnement dans les gaz de combustion peut itre le mecanisme principal 
de transfert d’energie. On presente des resultats sur les profils de temperature de gaz pour l’ecoulement MHD 
turbulentdtvelopptd’ungaz grisquirayonneentredeuxplansparalklesinfinisavec unchampmagnetique 
applique perpendiculairement aux plans. On port attention aux profils de temperature et au nombre de 
Nusselt pour differentes valeurs de nombres de Hartmann et de Reynolds, differentes epaisseurs optiques de 

gaz et pour le paramttre de couplage conduction-rayonnement. 

TURBULENTE MAGNETO-HYDRODYNAMISCHE STRdMUNG EINES 
STRAHLENDEN GASES 

Zusammenfassung-Die hohen Temperaturen und die gasfiirmigen Produkte bei der Verbrennung von 
kohlenwasserstotfhaltigen Brennstoffen in vorgeschlagenen groDen magnetohydrodynamischen Genera- 
toranlagen erfordern die Entwicklung genauer Modelle zur Berechnung der Temperaturprofile im Gas und 
der Warmestromdichten an der Wand. Bei den hohen Temperaturen und grogen Abmessungen wird der 
Strahlungswlrmeaustausch in den Verbrennungsgasen ein bedeutender Warmeiibertragungsmechanismus 
sein. Es werden Ergebnisse fiir Temperaturprofile im Gas dargestellt fur den Fall der voll ausgebildeten 
turbulenten magnetohydrodynamischen Strijmung eines grau strahlenden Gases zwischen zwei unendlichen 
parallelen Platten. Senkrecht zu den Platten wirkt das magnetische Feld. Besonderes Gewicht wird auf die 
Untersuchung von Temperaturprofilen und Nusselt-Zahlen fiir verschiedene Werte der Hartmann- und 
Reynolds-Zahl, der optischen Dicke des Gases sowie des Verhaltnisses zwischen Warmeleitung und 

Strahlung gelegt. 

TYP6YJIEHTHOE MAIHWTOl-H~PO~HHAMH~ECKOE TEYEHME M3JIYqAIOIIIEI-0 
l-A3A 

Awmaunn- BbICOKRe TeMnepaTypbI H ra3006pa3Hbie npOJJyKTb1 CrOpaHHZ4 yr,IeBOnOpOnHbIX TONIBB 

B KpynHbIXMarH11TOrW,pOLUlHaMWeCK,,XreHepaTOpaX norpe6osanapa3pa6orxa TOVHbIX MOneJIefi jY(JIS 

pacgera npo@ineii rebnteparypbr ra3a ri TennoBbIx Harpy3oK Ha CTeHKe. npH BbIcoKkfx TeMnepaTypax 

Ii 6onbmltx pa3McpaX yCTaHOBOK JIyWCTbIii TeuJIOuepeHOC B ra3006pa3HbIX IIpOnyKTaX CrOpaHki% 

MOxeT 6bITb BaxHbIM MeXaH83MOM IlepeHOCa SHeprkiA. npenCTaBJIeHb1 pe3yJIbTaTbI u0 OnpcnefleHHK, 

upO~llne8TeMnepaTypbIra3aupauOnHOCTb~pa3BeTOMTyp6yneHTHOM MarHATOrUnpO~~HaMU~eCKOM 

TereHmu3nyramqerocepororasa Mexny GecKoIie'lHbIManapannenbIibIMki nnacmHawi, nepnennury- 
JISlpHO K KOTOpbIM npliJIOmeH0 MarHATHOe nOJIe. Oco6oe BHHMaHBe o6paUeHo Ha npO@iJIH TeMne- 

paTypbI, wcno HyCCeJIbTa npe pa3mrHbIx 3HaqeHmx sacen rapTMaHa u Petinonbnca, onrmiecxoii 
TOJII4HHbIra3aEinapaMeTpa,onHcbIBaIO~eroCOOTHOILIeHHe Mexny TeWIOupOBOaHOCTbK,k,R3JlySeHBeM. 


