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TURBULENT MHD FLOW OF A RADIATING GAS
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Abstract— The high temperatures and gaseous products of combustion of hydrocarbon fuels in proposed
large scale magnetohydrodynamic generators have resulted in a need to develop accurate models for
prediction of gas temperature profiles and wall heat fluxes. At the high temperatures and large sizes, radiative
heat transfer in the combustion gases may be a significant energy transport mechanism. Results are presented
for gas temperature profiles for fully developed turbulent magnetohydrodynamic flow of a radiating gray gas
between infinite parallel plates with a magnetic field applied perpendicular to the plates. Emphasis is placed
on examination of temperature profiles and Nusselt numbers for various values of Hartmann and Reynolds
numbers, gas optical thickness, and conduction to radiation parameter.
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NOMENCLATURE

coefficients defined by equation (28);
van Driest constant, 26.0;

Mei and Squire constant, 3.4;

black body emissive power [W/m?];
magnetic field [Webers/m®];

magnetic interaction, Ha%/Re;

constant pressure specific heat
[kI/kg-K];

friction coefficient;

terms defined by equation (29);
magnetic damping function;

hydraulic diameter [m];

terms defined by equation (30);

electric field [V/m];

Eckert number, #/c,T,,;

exponential integral of order n;
function defined by equation (7);
Hartmann number, §B,(s,/u)'?;
current density [A/m?];

dimensionless current, j/6,0B,,;

thermal conductivity [W/m-K];

power factor, E/0B,,;

kernels defined by equations (16) and
(20);

Von Karman constant, 0.4;

channel width [m];

number of nodal points;

conduction to radiation parameter,
ki/4a T3 ;

Nusselt number, D g,/k(T, — T3);
molecular and turbulent Prandtl num-
bers, v/u, vja,;

heat flux [W/m?];

dimensionless heat flux, —g/4tr,0T%:
channel Reynolds number, v,8/v;
hydraulic Reynolds number, v.D,/v;
turbulent Reynolds number, Re(C,/2)172;

t, parameter;

T, temperature [K];

v, velocity [ m/s];

U D, centerline and mean velocities [m/s];
v, normalized velocity, v/?;

V, scaling factor, 4 Re,;

x,y,z,  coordinates [m];

z, turbulent coordinate.

Greek symbols
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o, 0, molecular and turbulent diffusivities
[m?/s];

3, channel half width [m];

¢, parameter;

#, dimensionless coordinate, z/4;

0, normalized temperature, T/T,,;

K, absorption coefficient [m™1];

i, dynamic viscosity [kg/m-s];

v, v, molecular and turbulent viscosities
[m?/s];

¢ logarithmic coordinate defined in equa-
tion {31};

o, Stefan-Boltzmann constant
[W/m?-K*];

O, electrical conductivity [Q™'m™!];

T, optical thickness, xz;

Tos channel optical thickness, xL.

Subscripts

b, bulk ;

¢, convective;

r, radiative;

w, wall.

INTRODUCTION

THE HIGH temperatures of gaseous products resulting
from combustion of hydrocarbon fuels have resulted in
a need to develop more accurate models for prediction
of gas temperature profiles and wall heat fluxes in the
magnetohydrodynamic generator (MHD). Infor-
mation concerned with gas temperature profiles parti-
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cularly near the generator walls is necessary in order to
evaluate the gas electrical conductivity and associated
wall heat fluxes. Successful design of a wall cooling
system and selection of materials for the generator
walls also require estimates for wall heat fluxes. At the
high operating temperatures and in the presence of
combustion products of carbon dioxide and water
vapor, particles, as well as a seed material which acts as
a plasma, radiative heat transfer is expected to become
an important factor as the size of the generator
increases [ 1]. The overall objective of this research is
an examination of radiative transfer in MHD flows.
Results from this study are also expected to find
application to gas-cooled nuclear reactors and flow of
plasma.

Viskanta [2,3], Cramer and Pai [4] as well as
Wilson and Haji-Sheikh [ 5] examined radiative trans-
fer for MHD flow between infinite parallel plates for
gray gas properties where the absorption coefficient is
independent of frequency. Gupta and Gupta [6] as
well as Datta and Janta [7] investigated radiative
transfer effects for flow of an optically thin, electrically
conducting fluid in a vertical channel. Helliwell [8,9]
as well as Helliwell and Mosa [10] utilized the
differential approximation [11] to describe radiative
transfer in MHD channel flow. Smith and Paul [12]
employed a band absorption model to examine radi-
ative transfer in MHD flow. In these investigations,
the flow was assumed laminar with several of the
analyses [2, 3, 5, 8--10, 12] utilizing velocity profiles as
obtained from the Hartmann MHD flow results [ 13].
In most MHD generators, however, the flow is expec-
ted to be turbulent and results derived from these
analyses may not be directly applicable to proposed
generators. This concern is illustrated by the fact thata
Hartmann number of 200 which is representative of
that for the U-25 channel [14] yields physically
unreasonably high channel centerline temperatures
when inserted into the above analyses. Consequently, a
need exists to provide results concerned with radiative
transfer in turbulent MHD flows.

The purpose of this paper is to present results to
illustrate effects of radiative transfer in turbulent
MHD flow. The system selected for study as depicted
in Fig. 1 consists of hydrodynamically and thermally
established turbulent steady flow of an electrically
conducting and radiatively participating gas between
two infinite parallel plates with an imposed uniform
and constant magnetic field applied in the positive z-
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Fi. 1. Schematic diagram of MHD channel.
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direction. A constant electric field is applied in the
positive y-direction. This system was chosen for con-
venience of including MHD effects and enabling the
radiative transfer contribution to be evaluated. Ana-
lyses and results presented here, however, are expected
to be applicable to more comprehensive MHD flow
models. Channel walls are isothermal and black for
radiative transfer purposes. Physical properties of the
gas are constant. The gas is in local thermodynamic
equilibrium and emits and absorbs thermal radiation
with a constant absorption coefficient. The gas has a
refractive index of unity, and scattering effects are
negligible. Results are sought for gas temperature
profiles and Nusselt numbers as functions of system
parameters.

ANALYSIS

Energy balunce

The thermal energy equation for fully developed
turbulent flow of an electrically conducting and radi-
atively participating gas between infinite parallel
plates where viscous dissipation and Joule heating
effects are considered but axial components of con-
ductive, convective and radiative transfer are neglected
is [13. 15, 16]

df 7 N\dT]
dz{k(" + ) i |
dg,

— ([,@b‘j(éi\):‘_;z + -2
B S v /\dz s, dz

where constant properties have been assumed through-
out. In equation (1), the LHS represents the net
thermal energy transport due to molecular conduction
and turbulent transport with «, denoting the turbulent
diffusivity of heat. The terms on the RHS are in the
order shown the molecular and turbulent viscous
dissipation with v, being the turbulent viscosity of
momentum, Joulean heating with ¢, denoting the gas
electrical conductivity, and divergence of the radiative
flux. Both the turbulent transport guantities are
assumed to vary across the channel. The boundary
conditions for the temperature distribution are T(0) =
T(L) = T,,. The following dimensionless quantities are
introduced

z T v
=, 0= V=
a T, 1t
et p g i
B po= - o= -
T "oa, ¢, T,
¢ 1.2 }
Ha = 0B (,_?) R R
¢ o H (feEBm
kx ~d \
N = = xl. — L o
dor3 To= b Q=g g 2)

where Pr and Pr, denote the molecular and turbulent

- Prandil numbers, respectively. Ha is the Hartmann

number based on the half-channel width d, and N
represents the ratio of molecular thermal conduction
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to radiation for a gas with an absorption coefficient x
and optical thickness 1, based on the channel width.
Equation (1) thus becomes

d [( Pr v,)d@]
—{ 1+ -— | = —PrEc
dn

Pr, v )dn

v\ /dV\? 5 dQ
BLIR T i 2y2 .. 9 Ter
X[(IJrv)(dn) +HaJ] SN “dn 3)

with boundary conditions 8(0) = 6(2) = 1. As aresult
of the numerical scheme employed to solve equation
(3), the derivative on the LHS was retained. Since Q, is
expressed by an integral term with temperature ap-
pearing to the fourth power in the integrand, equation
(3) constitutes a second-order, non-linear,
integrodifferential equation for the gas temperature
distribution. In order to predict the gas temperature
profiles, expressions for gas velocity profiles, turbulent
viscosity, current density, and radiative flux must be
specified and are provided in the following sections.

Velocity, turbulent viscosity, and current models

The flow in several proposed MHD power gener-
ators such as the U-25 is subsonic and turbulent.
Thus, in considering subsonic flow, the relation of the
turbulent boundary layer and free stream is assumed
to be similar to that encountered in ordinary hy-
drodynamic (OHD) flows where magnetic effects are
absent. Kruger and Sonju [17] by employing the
Karman—-Pohlhausen technique have provided an
estimate of wall shear stress and boundary-layer
thickness corresponding to the semi-empirical velocity
correlations proposed by Harris [18]. The local ve-
locity normalized with the centerline value is evaluated
from

1/2
) _ (%) [6.154 + 2457

Ve

2
x In{Ren) + F, (—I{?—r})J 4)
Re,

Kruger and Sonju [ 17] noted that for MHD flow over

a flat plate, the boundary-layer thickness and wall

shear stress approach asymptotic values. Since the

present study addresses fully developed flow con-

ditions, the asymptotic value for wall shear stress was

employed for the friction coefficient in equation (4),

Graphical results for the asymptotic friction coefficient

presented by Kruger and Sonju [ 17] are approximated
by

Cf 73
> = [10.536 + 0.929 In(B)

+0.02221n*(B)] x 1073 (5)

where B(= Ha?/Re?) is the interaction parameter.
The turbulent Reynolds number is defined as

C,\'2  Rep(C,\!2
Re,= Re[SL) —Ren(Cr
wone(Z) G e
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where Re (=Rep/4) and Rey (=40.6/v) denote the
channel and hydraulic Reynolds numbers, respec-
tively. The function F,({) is presented graphically by
Harris [18] and is approximate by the following
expression [17] for { < 0.6

F () = 2502 + 21.930¢

— (6.259 + 53.747{ + 649.5350*)12 (7a)
and for { > 0.6
Fi({)= —207 — 2457 In({). (7b)

Near the wall when # is small, velocities evaluated from
equation (4) become negative as a result of the
logarithmic term. Therefore, in a manner similar to
that employed in OHD turbulent flows for the laminar
sublayer, velocities are calculated utilizing the product
of Ren up to the position where this product equals
equation (4). The mean velocity is determined by
integration of the local velocities across the half-
channel width. The velocity ratio V is then formed by
dividing the local velocities by the mean velocity.
Finally, differentiation of the velocity ratio yields the
velocity gradient for insertion into the viscous dissi-
pation term of equation (3).

Expressions for the turbulent viscosity for MHD
flow are generally based on those for turbulent vis-
cosity for OHD flow with modifications to account for
such factors as the damping of the turbulent viscosity
as the magnetic field is increased. For the present
study, the OHD turbulent viscosity model of van
Driest [19] as modified by the Mei and Squire channel
factor [20] is utilized with a multiplicative magnetic
damping function utilized by Fiveland [21]. Thus,
vw_05D F272(1 _ a—z/A\21/2
. —1+En{[1+4Kz(1 e~ 7)) 1} ®)
where b, K, and A are the Mei and Squire, Von
Karman, and van Driest constants, respectively, and
the turbulent distance is

Z = #Re,. )
The magnetic damping function is [21]

D = e~ 700 Hd*/Re}

(10)

The OHD turbulent viscosity model has also been
employed by Edwards and Balakrishnan [22] in
studies of turbulent channel flow of a radiating gas.
The turbulent Prandtl number is assumed unity for the
results presented here.

The electrically conducting gas moving through the
imposed magnetic field produces an induced current
flowing in the negative y-direction of Fig. 1. In
dimensionless form, the induced current is [13,17]

(1)

where the power factor K = E/iB,, with E represent-
ing the applied electric field. If K = 1, an open circuit
exists and the net current given by the integration of
equation (11) across the channel is zero. A short circuit

J=K—-Vmn
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resultsin E = K = 0. Valuesof K < 1 and > 1 1mply,
respectively, to an MHD generator and pump. The
additional Joulean dissipation due to turbulent fluc-
tuations in the velocity {18} is neglected | 21].

Radiative transfer model

The formulation of the gas radiative transfer model
considers the gas to have a constant absorption
coefficient. From Sparrow and Cess [ 16], the radiative
flux for an emitting and absorbing gray gas in local
thermodynamic equilibrium is

g,(1) = 2E(0)[ Exs{(r) — Eslry — 1))

+2 ( Ey()Ey([t — tDsgn(z —ndr (12)
AY

where optical thickness is defined as 7 = xz. E; and E;
denote second and third exponential integrals, re-
spectively. E, is the black body emissive power given
by the Stefan-Boltzmann law. The wall radiative flux
is needed in the Nusselt number expressions discussed
later and is found by evaluating equation (12) at the
wall where T = 0. Thus, with E,(0) = 1/2

1
q,(0) = ?Eb(o)(a - E3(T0)J

—2fwmammmL

0

(13)

Introducing the dimenstonless parameters defined by
equation (2) and the integral property of the exponen-
tial integrals, equation (13) is transformed to

Q,{G):;i ( 0* — nEz(?n)dn» (14)

v O /
Recognizing that the temperature profiles are sym-
metric about the channel centerline, wall heat flux may
be evaluated from

0= |

GO

H

(O* — DK, (n)dn (15)

where the kernel K is defined as
To - | To
Ki(n) = E, ‘2*71 + E, 5 2-n| (16)

The above form for wall radiative flux is convenient
since the numerical integration is carried out only for
one-half of the channel.

The divergence of radiative flux needed for solution
of equation (3) is found by differentiation of equation
(12) with respect to 1. Thus,

% = 4E,(t) — 2E,{0)[ E5(z) + Ey{to — 1)]

-2 ( EJDE(jt — f[)dt (17
where E, is the first exponential integral. Introducing
the technique presented by Mingle [ 23] for removal of
the singularity in the integral of the first exponential
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integral, and the dimensionless variables, equation (17}
becomes
4o, _ 7
dy b

~3

(84— 0*(n)]
S

—

> N _
x E, -f(?n—@l)]dc. A~4[0‘w)~1JK1(m. (18)

Finally, employing the symmetric temperature profile
conditions, the divergence of the radiative flux is

49, ’.l 47) — g%
a8, [0 — 0%(m]

i
x Ko )dl - [0%m) — (]K. () (19)
where the kernel K, is defined as

Kl(nag):El{%(In*:‘)]

Yo 4 . -
+ E, Syl=c=my {20
Hence, only information about temperature profiles in
the half-channel is needed.

Wall heat flux and Nusselt numbery
The wall heat flux is the sum of the conductive and
radiative fluxes evaluated at the wall and is given by

daT .
G = ..«k.“- + LI,(O) (:])
dz .-
which may be expressed as
N do|
W=+ Q0 (22)
Té d”[ ;,,;Q

Another quantity of interest is the Nusselt number
defined in terms of the wall heat flux and hydraulic
diameter as

{23)

where T, is the bulk fluid temperature. Equation (22}
in conjunction with equation (23) transform to

Nu = Nu, + Nu, (24)

where convective and radiative Nusselt numbers are
defined respectively as

N 4 4o )
U, = e )
f)b -1 d?’[ Tg=0
47
= v — () (25}
e Al
The bulk fluid temperature is found from
I
0, = ‘\ oV dn. {26)
JO

The above definition of the convective Nusselt number
includes effects attributed to radiative transfer since
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the gas temperature gradient at the wall is partially
governed by the radiant exchange process.

METHOD OF SOLUTION

Solutions of the energy equation were arrived at by a
finite difference scheme where equation (3) was re-
placed with a set of linear algebraic equations with the
source and nonlinear terms on the RHS of equation (3)
assumed known. An iterative technique was then
utilized since the radiative term varies with tempera-
ture. The finite difference scheme for symmetry con-
ditions about the channel centerline yields the follow-
ing set of algebraic equations for the temperatures

Ai 0y — (A= + A)0; + A0,y = —C; — Dy;
i=2 toM-—1 (27a)
24y 1Oy —Ou) = —Cy — Dy (27b)
where i = 1 and M correspond to positions at the

channel wall and centerline, respectively,and 6, = 1.0.
The coefficients of 8; are evaluated from

Pr v,
Ai=(1+—— Mivr —Mm)s
Prt V/iv12
(28)

to M—-1
where the subscripti + 1/2 denotes that the quantity is
to be evaluated at the midpoint between adjacent
nodes. Also, 1, = 0, and 5y = 1.0. The temperature
independent source terms of viscous dissipation and
Joulean heating are represented by C; which are
determined from

v \/dV\? -
Ci=AnPrEc|{1+—){— | + Ha*J" |;
v /\dn i

i=2 toM

i=1

(29)

where A, is the width of each node. Nodal boundaries
are placed at the midpoint between adjacent nodes.
The temperature dependent radiative terms described
by D, are given as
D; = Af1~i A
' 2N dy |,
With the source terms known, equation (27) was
solved utilizing a tridiagonal matrix algorithm. The
iteration scheme consisted of specification of an initial
temperature distribution to evaluate the radiative
term. New temperatures from equation (27) were then
obtained. If the new temperatures upon comparison
with the previous temperatures do not satisfy a
convergence error criterion, the previous temperatures
were adjusted with a relaxation factor multiplied by
the difference between the new and previous tempera-
tures and the iteration process repeated. The re-
laxation factor whose value was typically 0.1 was
employed to ensure that nonlinearities attributed to
the radiative term were suppressed and that con-
vergence could be obtained. Upon achievement of
convergence, the bulk fluid temperature, wall heat
fluxes, and Nusselt numbers were calculated. Integrals

i=2toM

(30)
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appearing in the analysis were evaluated utilizing a
variable spacing trapezoidal integration algorithm.
For turbulent flows, velocity and temperature pro-
files vary significantly near the channel wall and a
nonuniform grid spacing must be employed to main-
tain a manageable number of grid points. The nodal
positions were assigned according to the following
expression [22]
1

n=—@ —1);

=In@xv,+1
v E=1In(y )

(31)
where V, (=4Re,) is a scaling factor whose purpose is
to place more points in the vicinity of the wall. The
constant utilized in V, was selected after some numeri-
cal experiments were performed to establish the in-
fluence of nodal positions on the temperature distri-
butions. The distance £, as measured from the wall to
the channel center where # = 1 in equation (31) is
subdivided into M — 1 equally spaced nodes. Equation
(31) then yields a variable grid spacing for values of
with sufficient number of points near the channel wall.
For the results presented here, M = 51 was found to
provide accurate results within reasonable compu-
tational times.

RESULTS AND DISCUSSION

Parameter values

Before results from the analysis are presented, it is
informative to identify physically representative values
of the dimensionless quantities which govern the
solutions. Values for the dimensional parameters were
selected as typical of those for a large scale MHD
generator such as the U-25 channel [14]. For this
channel, the mean velocity is approximately 900 m/s,
centerline temperatures are near 2800 K, wall tem-
peratures may range from 1000 to 1800 K depending
on the wall cooling system, electrode materials, and
presence of a molten slag layer, channel widths vary
from 0.35 to 0.75m, the magnetic field is near 2
Webers/m?, and the gas has an average electrical
conductivity of 102~ ! m~!. Utilizing these values as
well as gas property data taken from Bunde [24],
representative values for the dimensionless parameters
are Rep, = 3 x 10%, Ha = 200, Ec = 0.2, and N =
0.0001 to 0.01 with 7, = 0.1 to 10. Definitive values for
T, are unavailable; however, Wilson and Haji-Sheikh
[5] quoted an absorption coefficient of 0.0001 m ™! for
a small scale MHD channel, and Smith and Paul [12]
reported optical thicknesses ranging from 1 to 10 for a
gas composition similar to that in the U-25 channel. In
selection of values for the governing parameters,
cognizance was made of these approximate but physi-
cally meaningful values of the parameters.

Transparent gas

Representative velocity and temperature profiles for
a transparent gas displayed in Figs. 2 and 3, re-
spectively, are intended to illustrate the turbulent
characteristics and behavior of the results. Profiles are
shown for OHD and MHD flows with hydraulic
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Fi1G. 4. Temperature profiles as a function of optical thickness.

Reynolds numbers of 1 x 10% and 3 x 10° and
Hartmann numbers of zero for the OHD results and
150 and 200 for the MHD flows. The OHD velocity
profiles are based on the universal turbulent profiles
with the coefficient of friction evaluated from the
Filonenko expression [25]. The OHD velocity profiles
exhibit smaller gradients near the wall and lower mean
velocities than the MHD velocity profile for the same
centerline velocities. As the Hartmann increases the
profiles become more uniform with higher gradients
near the wall. For the OHD velocity profiles, higher
Reynolds numbers produce flatter profiles and steeper
velocity gradients near the wall. However, for the
MHD velocity profiles, higher Reynolds numbers
produce the opposite effect as displayed by results for
Ha = 200. As presently modeled, the magnetic
damping function in the turbulent viscosity expression
does not influence the velocity profiles. The OHD
temperature profiles in Fig. 3 are the result of viscous
dissipation and exhibit values near 1.07 for the two
Reynolds numbers. The inclusion of the Joulean heat-
ing term in the energy equation is seen to produce
significantly higher gas temperatures for MHD flows
than for the OHD case. Values of the Hartmann
number of 150 and 200 produce, respectively, center-
line temperatures of 2.4 and 3.4 for Re, = 3 x 108.

Decreasing the Reynolds number results in higher gas
temperatures since the transport of energy due to
Joulean heating by the turbulent mechanism is re-
duced. Results are also presented in Fig. 3 for a
magnetic damping function of unity in equation (8),
that is the OHD form. The damping function for Re,,
= 3 x 10° and Ha = 200 has a value of 0.96. The
inclusion of the damping function produces higher gas
temperatures since the turbulent viscosity is reduced
resulting in less energy being transported to the wall.
In comparison with temperatures evaluated for Hart-
mann MHD flow where laminar flow is assumed [3,
12, 13], the present temperature profiles are for
significantly higher Hartmann numbers. Thus, by
including turbulent transport in the energy equation,
higher Hartmann numbers are possible with physi-
cally reasonable temperature profiles.

Radiating gas

Representative temperature profiles for a radiatively
participating gas are displayed in Fig. 4 for Reynolds
and Hartmann numbers of 3 x 10% and 200, re-
spectively, and N = 0.001. Results are presented for
channel optical thicknesses ranging from zero cor-
responding to a transparent gas to 50. Values for the
other governing parameters are provided in the figure.
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Fic. 5. Effect of conduction-radiation parameter.

As the optical thickness increases from 0 to 100,
significant decreases in gas temperatures are observed.
For optical thicknesses less than about 0.1, the results
are adequately described by those when the gas is
assumed to be optically thin [16]. For optical thick-
nesses greater than 10.0, gas temperatures continue to
decrease and become nearly insensitive to optical
thickness particularly near the channel centerline. At
very large optical thicknesses corresponding to an
optically thick gas, the product of the divergence of the
radiative heat flux and square of the channel optical
thickness is independent of optical thickness [16].
Thus, the gas temperatures as observed by equation (3)
become independent of the optical thickness. For the
anticipated optical thickness range of 1 to 10, center-
line gas temperatures vary from approximately 1.4 to
2.0 higher than the wall temperatures.

Effects of the conduction—radiation parameter on
gas temperature profiles are illustrated in Fig. 5 where
results are shown for values of the parameter equal to
0.0001, 0.001 and 0.01 with optical thicknesses of 1.0,
5.0 and 10.0. As the conduction—-radiation parameter
decreases, the radiative term in equation (3) becomes
more significant with a resultant decrease in gas
temperatures. The optically thick limit where gas

temperatures are independent of optical thickness is
attained at smaller values of the optical thickness for
the lower wvalues of the conduction-radiation
parameter.

The influence of the Reynolds and Hartmann num-
bers is demonstrated in Fig. 6 where gas temperature
profiles are presented for N = 0.001, 7, = 5.0, and
several values the Reynolds and Hartmann numbers.
As expected, higher Hartmann numbers produce
higher gas temperatures and higher Reynolds numbers
yield lower profiles as a result of the increase turbulent
transport. Gas temperatures are observed to be more
sensitive to the higher values of the Reynolds number.

Nusselt numbers

In Table 1, results are tabulated for the bulk
temperature, as well as convective, radiative, and total
Nusselt numbers for various values of the governing
parameters. The table is organized into four groups
corresponding to temperature profiles presented in
Figs. 3-6. The first group of results is for a transparent
gas. The OHD flow produces a convective Nusselt
number of 7310 for Re, = 3 x 10° Experimental
measurements for OHD turbulent flow [26] yield
Stanton number correlation from which a Nusselt



Turbulent MHD flow of a radiating gas 667

‘-G,rlllrrTIlTl T T T [T 11

L k-05 Rep, 108 i
Pr=0.85 ===
Pr;=1.0 —_— 3

I~ Ec=0.2 —--10 T T T =

N=0.001 -7

8= T/Ty

n=2/8

Fi1G. 6. Effect of Reynolds and Hartmann numbers.

Table 1. Bulk temperatures and Nusselt numbers*

Rej, 108 Ha N Ty 0, Nu,, 10* Nu,, 104 Nu, 10*
3 0 0 0 1.07 0.731 0.0 0.731
1 150 4.17 0.139 0.0 0.139
3 150 2.30 0.395 0.0 0.395
3 200 3.18 0.371 0.0 0.371
3 200 0.001 0.1 2.98 0378 0.066 0.445

0.2 2.70 0.391 0.183 0.574
0.5 221 0.427 0.521 0.948
1.0 1.87 0475 0978 1.45
20 1.61 0.540 1.66 220
5.0 141 0.626 2.86 3.49
10.0 1.32 0.667 3.87 4.54
20.0 127 0.680 4.76 5.44
50.0 1.24 0.654 529 5.94
3 200 0.01 1.0 263 0.396 0.218 0.614
5.0 2.09 0.434 0.652 1.09
10.0 1.94 0.438 0.881 1.32
0.0001 1.0 1.27 0.826 4.54 5.37
5.0 1.08 1.98 174 194
10.0 1.06 2.54 24.0 26.5
1 150 0.001 50 1.30 0.373 2.44 2.81
3 1.27 0.732 2.40 3.13
10 1.22 2.13 2.36 4.49
1 200 1.44 0.289 292 321
3 141 0.626 2.86 3.49
10 1.34 1.70 2.72 443

* Results are for K = 0.5, Pr = 0.85, Pr, = 1.0, Ec = 0.2.
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number of 7100 is calculated for Rep, = 3 x 10°. Thus,
the results presented here for OHD appear reasonable.
As the Hartmann number is increased, the convective
Nusselt number decreases since the increase in tem-
perature gradient at the wall is offset by a more rapid
increase in bulk temperature. Results in the second
group for a radiating gas illustrate that as the channel
optical thickness increases, the convective Nusselt
number increases and then decreases for optical thick-
nesses greater than about 20.0. The radiative Nusselt
number continues to increase with optical thickness
and shows a tendency of becoming independent of
optical thickness which is characteristic of an optically
thick gas. The radiative Nusselt number is the signi-
ficant contributor to the total Nusselt number for
optical thicknesses greater than 5.0. As the con-
duction—radiation parameter is increased, the Nus-
selt numbers presented in the third group exhibit
large increases with optical thickness particularly for
values of this parameter less than 0.001. Convec-
tive Nusselt numbers for wvalues of the
conduction-radiation parameter less than 0.01 are
nearly independent of the optical thickness. The
Nusselt numbers for N = 0.001 exhibit rather signi-
ficant increases as the optical thickness is varied from
0.5 to 10.0 even though the corresponding gas tem-
perature profiles in Fig. 5 and bulk temperatures in
Table 1 change only slightly. The fourth group of
results shows that as the Hartmann number is in-
creased from 150 to 200, convective Nusselt numbers
decrease but radiative Nusselt numbers increase, and
total Nusselt numbers increase except for Rep, = 107
where a small decrease is found. Increasing the Rey-
nolds number from 10° to 107 produces significant
increases in the convective Nusselt number, and small
decreases in the radiative Nusselt number. These
trends are consistent with the temperature levels and
gradients in Fig. 6.

CONCLUSIONS

Analyses and results have been presented to ex-
amine the influence of gas radiation on temperature
profiles for fully developed turbulent MHD flow.
Representative models for turbulent gas velocity pro-
files as a function of the Reynolds and Hartmann
numbers, turbulent viscosity with a magnetic damping
function, current density, and radiative transfer for an
absorbing and emitting gas with constant absorption
coefficient were introduced. Analyses were also pre-
sented for gas bulk temperature as well as convective,
radiative, and total Nusselt numbers. The results
illustrated that gas radiation lowers significantly gas
teraperatures. Higher Hartmann numbers yield higher
gas temperatures but higher Reynolds numbers pro-
duce lower temperatures as a result of the increased
turbulent transport. The convective Nusselt number
remains nearly constant as the optical thickness
increased. At intermediate to large values of optical
thickness, the radiative Nusselt number dominates the

THEGDORE F. SMITH, FARIBORZ ALIPOUR-HAGHIGH! and PriLLip H. Paus

convective Nusselt number and exhibits a strong
dependency on optical thickness.
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ECOULEMENT TURBULENT MHD D’UN GAZ RAYONNANT

Résumé—Les hautes températures et les produits gazeux de la combustion des hydrocarbures dans des
générateurs MHD de grande taille nécessitent le développement de modéles précis pour la prédiction des
profils de température des gaz et des flux thermiques pariétaux. Aux températures élevées et pour les grandes
tailles, le transfert thermique par rayonnement dans les gaz de combustion peut étre le mécanisme principal
de transfert d’énergie. On présente des résultats sur les profils de température de gaz pour I'écoulement MHD
turbulent développé d’un gaz gris qui rayonne entre deux plans paralléles infinis avec un champ magnétique
appliqué perpendiculairement aux plans. On port attention aux profils de température et au nombre de
Nusselt pour différentes valeurs de nombres de Hartmann et de Reynolds, différentes épaisseurs optiques de
gaz et pour le paramétre de couplage conduction-rayonnement.

TURBULENTE MAGNETO-HYDRODYNAMISCHE STROMUNG EINES
STRAHLENDEN GASES

Zusammenfassung—Die hohen Temperaturen und die gasfSrmigen Produkte bei der Verbrennung von
kohlenwasserstoffhaltigen Brennstoffen in vorgeschlagenen groBen magnetohydrodynamischen Genera-
toranlagen erfordern die Entwicklung genauer Modelle zur Berechnung der Temperaturprofile im Gas und
der Wirmestromdichten an der Wand. Bei den hohen Temperaturen und groBen Abmessungen wird der
Strahlungswirmeaustausch in den Verbrennungsgasen ein bedeutender Wiarmeiibertragungsmechanismus
sein. Es werden Ergebnisse fiir Temperaturprofile im Gas dargestellt fiir den Fall der voll ausgebildeten
turbulenten magnetohydrodynamischen Stromung eines grau strahlenden Gases zwischen zwei unendlichen
parallelen Platten. Senkrecht zu den Platten wirkt das magnetische Feld. Besonderes Gewicht wird auf die
Untersuchung von Temperaturprofilen und Nusselt-Zahlen fiir verschiedene Werte der Hartmann- und
Reynolds-Zahl, der optischen Dicke des Gases sowie des Verhiltnisses zwischen Wirmeleitung und
Strahlung gelegt.

TYPBYJIEHTHOE MATHUTOIMAPOJVUHAMUWUYECKOE TEUHEHUE U3JTYYAIOIIETO
T'A3A

Annorauns — BbicokHe TeMnepaTypbl B Fa3000pa3Hbie MPOLYKTHI CrOPaHUs YTA€BOZOPOAHBIX TOIIHB
B KPYIHBIX MarHUTOTMAPOIMHAMHYECKHX TeHepaTopax noTpeboBain pa3paGoTKH TOUHBIX Moaesei s
pacyeTa npoduiieii TeMnepaTyphl raza M TENJOBLIX HArpy30k Ha cTeHke. [1pH BBICOKMX TeMnepaTypax
H 6onbWIMX pa3Mepax YCTAHOBOK JIYMHMCTHIH TEIIONEPEHOC B Ta3000pa3HbIX MPOOYKTaX CrOpaHHs
MOXET OBITh BaXXHBIM MEXaHH3IMOM NepeHoca 3HepruM. [IpeacTtaBieHbl pe3yabTaThl MO ONpene]eHHIO
npodunei TemnepaTyprl ra3a NpH NOJHOCTHIO Pa3BHTOM TYPGYJIEHTHOM MArHHTOTHAPOAHHAMHYECKOM
TEYEHUH M3J1y4arOLIEro Ceporo raza Mexy 6ECKOHEYHBIMH NapajlieIbHbIMH IIACTHHAMH, MEPIEHIHKY-
JISIPHO K KOTOPBLIM MPHJIOXEHO MarHuTHOe none. Ocoboe BHUMaHHe ofpallleHO Ha TPODHIH TeMne-
patypsbl, uucno HyccensTa nmpu pasiH4HbIX 3HaueHHAX uucen ['aptmana W Peiinonbaca, onTHueckoi
TOJILUMHBI TA3a K IAPAMETPa, ONHCBIBAIOIIErO COOTHOLICHHE MKy TEJIONPOBOAHOCTEIO H H3NTyHEHHEM.



